En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes como en la geometría, a los números como en la aritmética, o a la generalización de ambos, como en el álgebra.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio. Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.[1] Las matemáticas en el Islam, a su vez, desarrollaron y extendieron las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.
Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy.
Trataremos la evolución de los conceptos e ideas matemáticas siguiendo su desarrollo histórico. En realidad, las matemáticas son tan antiguas como la propia humanidad: en los diseños prehistóricos de cerámica, tejidos y en las pinturas rupestres se pueden encontrar evidencias del sentido geométrico y del interés en figuras geométricas. Los sistemas de cálculo primitivos estaban basados, seguramente, en el uso de los dedos de una o dos manos, lo que resulta evidente por la gran abundancia de sistemas numéricos en los que las bases son los números 5 y 10.
Las matemáticas babilónicas hacen referencia a las matemáticas de la gente de Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.
En contraste con la escasez de fuentes en las matemáticas egipcias, el conocimiento sobre las matemáticas en Babilonia se deriva de más de 400 tablillas de arcilla desveladas desde 1850. Labradas en escritura cuneiforme, las tablillas fueron grabadas mientras la arcilla estaba húmeda y cocidas posteriormente en un horno o secadas al sol. Algunas de ellas parecen ser tareas graduadas.
Las evidencias más tempranas de matemáticas escritas datan de los antiguos sumerios, que constituyeron la civilización primigenia en Mesopotamia. Los sumerios desarrollaron un sistema complejo de metrología desde el 3000 a. C. Desde alrededor del 2500 a. C. en adelante, los sumerios escribieron tablas de multiplicar en tablillas de arcilla y trataron ejercicios geométricos y problemas de división. Las señales más tempranas de los numerales babilónicos también datan de ese periodo.
Egipto
Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde el periodo helenístico, el griego sustituyó al egipción como el lenguaje escrito de los escolares egipcios y desde ese momento las matemáticas egipcias se fundieron con las griegas y babilónicas para dar lugar a las matemática helénica. El estudio de las matemáticas en Egipto continuó más tarde bajo el imperio árabe como parte de las matemáticas islámicas, cuando el árabe se convirtió en el lenguaje escrito de los escolares egipcios.
El texto matemático más antiguo descubierto es el papiro de Moscú, que data del Imperio Medio de Egipto, hacia el 2000-1800 a. C. Como muchos textos antiguos, consiste en lo que hoy se llaman problemas con palabras o problemas con historia, que tienen la intención aparente de entretener. Se considera que uno de los problemas es de particular importancia porque ofrece un método para encontrar el volumen de un tronco: "Si te dicen: Una pirámide truncada [de base cuadrada] de 6 de altura vertical, por 4 en la base [base inferior] y 2 en lo alto [base superior]. Haces el cuadrado de 4 y resulta 16. Doblas 4 y resulta 8. Haces el cuadrado de 2 y resulta 4. Sumas el 16, el 8 y el 4 y resulta 28. Tomas un tercio de 6 y resulta 2. Tomas 28 dos veces y resulta 56. Mira, es 56. Encontrarás lo correcto."
Una vision panoramica de la cultura matematica China.
En China, el emperador Qin Shi Huang (Shi Huang-ti) ordenó en 212 AC que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral.
Desde la Dinastía Zhou, a partir del 1046 AC, el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).
La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.
Después de la quema de libros, la dinastía Han (202 a.C - 220 d.C) produjo obras matemáticas que presumiblemente abundaban en trabajos que se habían perdido. La más importante de estas es Las nueve lecciones sobre arte matemático, cuyo título completo apareció hacia el 179 d. C., pero existía anteriormente en parte bajo otros títulos. La obra consiste en 246 problemas en palabras que involucran agricultura, negocios, usos geométricos para establecer las dimensiones de las pagodas, ingeniería, agrimensura y nociones sobre triángulos rectángulos y π. También se usa el Principio de Cavalieri sobre volúmenes más de mil años antes de que el propio Cavalieri lo formulara en Occidente. Se crearon pruebas sobre el Teorema de Pitágoras y una formulación matemática de la eliminación de Gauss-Jordan. Liu Hui hizo un comentario de la obra hacia el siglo III d. C.
En resumen, las obras matemáticas del Han astrónomo e inventor Zhang Heng (78–139 d. C.) contenían una formulación para pi también, la cual difería de los cálculos de Liu Hui. Zhang Heng usó su fórmula de pi para encontrar volúmenes esféricos. Estaban también los trabajos escritos del matemático y teórico de la música Jing Fang (78–37 a. C.); mediante el uso de la coma pitagórica, Jing observó que 53 quintas justas se aproximan a 31 octavas. Esto llevaría más tarde al descubrimiento del temperamento igual que divide a la octava en 53 partes iguales y no volvería a ser calculado con tanta precisión hasta que en el siglo XVII lo hiciese el alemán Nicholas Mercator.
Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).
Las matemáticas árabes
Debe subrayarse que la cultura científica y matemática bajo dominio musulmán fue desarrollada por intelectuales provenientes de diferentes pueblos: persas, judíos, griegos, cristianos, etc., eso sí escrita en árabe.
Sus fuentes en cuanto al conocimiento griego fueron manuscritos propiamente griegos o versiones sirias y hebreas. Obtuvieron las obras fundamentales de Aristóteles, Apolonio, Arquímedes, Diofanto, Herón y las tradujeron al árabe. Por ejemplo, los Elementos de Euclides fueron obtenidos de los bizantinos alrededor del año 800 y la obra astronómica de Ptolomeo, el Almagesto, a la cual ellos dieron precisamente ese nombre, en el año 827. En realidad se mencionan dos fuentes:
"Los árabes adquirieron el conocimiento de la ciencia griega a partir de dos fuentes. La mayor parte de ella la aprendieron de los griegos del Imperio bizantino, pero también la adquirieron, de segunda mano, de los cristianos nestorianos de habla siríaca de Persia oriental. Los cristianos nestorianos, desde su centro de Jundishapur, tradujeron durante los siglos VI y VII un importante número de obras griegas científicas -sobre todo de lógica y de medicina- al siríaco, que había reemplazado al griego como lengua culta del Asia occidental desde el siglo III. Después de la conquista árabe, Jundishapur continuó siendo durante un tiempo el primer centro científico y médico del Islam, donde cristianos, judíos y otros súbditos de los califas trabajaban en la traducción de textos del siríaco al árabe. Damasco y Bagdad se convirtieron también en centros de este tipo de trabajo, y ya en el siglo IX se hacían en Bagdad traducciones directas del griego al árabe. En el siglo X casi todos los textos de la ciencia griega que luego se conocieron en Occidente estaban traducidos al árabe.'' [Crombie, A.C.: Historia de la ciencia. De San Agustín a Galileo siglos V-XIII, pp. 44-45]
Los árabes introdujeron y mejoraron los símbolos del sistema numérico hindú y la notación posicional. También usaron los irracionales de la misma forma que lo hicieron los hindúes. Esto debe enfatizarse: Omar Khayyam (1048 - 1122) y Nasir-Eddin (1201 - 1274) afirmaron con toda claridad que las razones de magnitudes, conmensurables o inconmensurables, podían ser llamadas números. Resulta interesante, sin embargo, que aunque ellos conocían el uso de los números negativos y sus reglas de operación, introducidas por los hindúes, aún así los rechazaron. Con esto ya tenemos un primer retrato de la cultura islámica. Vamos ahora a entrar en mayor detalle en las matemáticas.
Se mencionan dos tradiciones en la astronomía y las matemáticas en Bagdad. Una con base en las fuentes persas e indias, que subrayaba una aproximación algebraica en las matemáticas, y también presente en las tablas astronómicas, y con una motivación práctica. En esa tradición se coloca al-Khwarizmi. Otra tradición con énfasis en las matemáticas helenísticas, que subrayaba la geometría y los métodos deductivos. Su figura emblemática: Tabit ibn Qurra. Ambas tradiciones se llegarían a fundir, lo que se podrá apreciar en el trabajo de Omar Khayyam y al-Kashi.
No hay comentarios:
Publicar un comentario